HO 40 Solutions ( ) ˆ. j, and B v. F m x 10-3 kg = i + ( 4.19 x 10 4 m/s)ˆ. (( )ˆ i + ( 4.19 x 10 4 m/s )ˆ j ) ( 1.40 T )ˆ k.

Similar documents
Physics 114 Exam 3 Spring Name:

Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec. 1-7

PHY2049 Exam 2 solutions Fall 2016 Solution:

Fields, Charges, and Field Lines

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

CONDUCTORS AND INSULATORS

Electricity and Magnetism Review Faraday s Law

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

Chapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

So far: simple (planar) geometries

Physics 111: Mechanics Lecture 11

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( )

kq r 2 2kQ 2kQ (A) (B) (C) (D)

Electricity and Magnetism Gauss s Law

MAGNETISM MAGNETIC DIPOLES

VEKTORANALYS GAUSS THEOREM STOKES THEOREM. and. Kursvecka 3. Kapitel 6 7 Sidor 51 82

(b) This is about one-sixth the magnitude of the Earth s field. It will affect the compass reading.

b mg (b) This is about one-sixth the magnitude of the Earth s field. It will affect the compass reading.

Physics 120. Exam #1. April 15, 2011

Exam 1 Solutions. +4q +2q. +2q +2q

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.

Physics 111. Exam #3. March 4, 2011

Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

Week 9 Chapter 10 Section 1-5

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO.

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review

Problem Free Expansion of Ideal Gas

Chapter 11 Angular Momentum

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Macroscopic Momentum Balances

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4

Conservation of Angular Momentum = "Spin"

CHAPTER 27 HOMEWORK SOLUTIONS

Quick Visit to Bernoulli Land

Physics 2212 G Quiz #2 Solutions Spring 2018

Chapter 19 Electric Charges, Forces, and Fields

Study Guide For Exam Two

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM

Handout 8: Sources of magnetic field. Magnetic field of moving charge

i-clicker i-clicker A B C a r Work & Kinetic Energy

Dynamics of Rotational Motion

Method Of Fundamental Solutions For Modeling Electromagnetic Wave Scattering Problems

CHAPTER 10 ROTATIONAL MOTION

VEKTORANALYS. GAUSS s THEOREM and STOKES s THEOREM. Kursvecka 3. Kapitel 6-7 Sidor 51-82

1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7

Projectile Motion. Parabolic Motion curved motion in the shape of a parabola. In the y direction, the equation of motion has a t 2.

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

A Tale of Friction Student Notes

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Downloaded from

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force

Module 5. Cables and Arches. Version 2 CE IIT, Kharagpur

10/23/2003 PHY Lecture 14R 1

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week 6, Chapter 7 Sect 1-5

Physics 2113 Lecture 14: WED 18 FEB

. You need to do this for each force. Let s suppose that there are N forces, with components ( N) ( N) ( N) = i j k

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units.

Physics 1202: Lecture 11 Today s Agenda

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

MTH 263 Practice Test #1 Spring 1999

N S. 4/4/2006 Magnetic Fields ( F.Robilliard) 1

PERMANENT MAGNETS 2/13/2017 HORSESHOE MAGNET BAR MAGNET. Magnetic interaction. Magnetic interaction. Another way of stating this is that

Magnetic Fields; Sources of Magnetic Field

Biot-Savart. The equation is this:

Root Locus Techniques

Electric and magnetic field sensor and integrator equations

Physics 114 Exam 2 Fall 2014 Solutions. Name:

8 Waves in Uniform Magnetized Media

1. The tie-rod AB exerts the 250 N force on the steering knuckle AO as shown. Replace this force by an equivalent force-couple system at O.

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.

Physics 443, Solutions to PS 7

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

I have not received unauthorized aid in the completion of this exam.

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

week 8 The Magnetic Field

Chapter 24 Solutions The uniform field enters the shell on one side and exits on the other so the total flux is zero cm cos 60.

Last time. Gauss' Law: Examples (Ampere's Law)

( )( )( ) Model: The magnetic field is that of a moving charged particle. Visualize: 10 T m/a C m/s sin T. 1.

2009 Physics Bowl Solutions

Chapter 4: Magnetic Field

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction.

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

1 Matrix representations of canonical matrices

Scattering of two identical particles in the center-of. of-mass frame. (b)

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

Chapter 11 Torque and Angular Momentum

Magnetic Field Lines for a Loop

Small signal analysis

Transcription:

.) m.8 x -3 g, q. x -8 C, ( 3. x 5 m/)ˆ, and (.85 T)ˆ The magnetc force : F q (. x -8 C) ( 3. x 5 m/)ˆ (.85 T)ˆ F.98 x -3 N F ma ( ˆ ˆ ) (.98 x -3 N) ˆ o a HO 4 Soluton F m (.98 x -3 N)ˆ.8 x -3 g.65 m.98 x -3 N ˆ ˆ.) q -.48 x -8 C and ( 3.85 x 4 m/)ˆ + ( 4.9 x 4 m/)ˆ (.4 T)ˆ F q.48 x -8 C (ˆ + ( 4.9 x 4 m/ )ˆ ) (.4 T )ˆ 3.85 x 4 m/ F q.34 x -3 N ( ˆ ˆ ) + (.45 x -3 N) ( ˆ ˆ ).45 x -3 N ˆ b.) (.4 T)ˆ F q.48 x -8 C F.34 x -3 N ˆ (ˆ + ( 4.9 x 4 m/ )ˆ ) (.4 T )ˆ 3.85 x 4 m/ ( ˆ ) +.45 x -3 N ˆ F (.45 x -3 N)ˆ (.34 x -3 N)ˆ ( ˆ ) (.34 x -3 N)ˆ (.45 x -3 N)ˆ 3.) F 4.6 x -5 N, 3.5 x -3 T, θ 4, and q -.6 x -9 C F q F qnθ o qnθ 4.6 x -5 N.6 x -9 C n 4 3.5 x -3 T.8 x m 7 4.) crcular area R.374 m n the x-y plane (.6 T)ˆ φ m A (.6 T)ˆ ( π(.374 m) )ˆ.5 Wb b.) (.6 T)ˆ φ m A (.6 T)ˆ ( π(.374 m) )ˆ

5.) 4. cm b y 3. cm HO 4 Soluton a c e 3. cm (.385 T)ˆ z d 5. cm f x urface abcd A abcd (.4 m) (.3 m) ˆ. m φ m A (.385 T)ˆ (. m )ˆ.46 Wb ˆ b.) urface befc A befc (.3 m) (.3 m) ˆ φ m A (.385 T)ˆ (.9 m )ˆ.9 m ˆ c.) urface aefd A aefd (.3 m) (.5 m)ˆ a (.5 m )ˆ a The drecton the ame a the cro-product of two ector that le n the plane of the urface. (.3 m)ˆ ˆ a and and (.3 m)ˆ + (.4 m)ˆ (.3 m)ˆ (.3 m)ˆ + (.4 m)ˆ.9 m ˆ.9 m + (. m )( ˆ ). m (. m ) + (.9 m ).5 m ˆ a ( ˆ ˆ ) + (. m ) ˆ ˆ + (.9 m )ˆ. m ˆ + (.9 m )ˆ.8ˆ +.6ˆ.5 m ( ˆ ) φ m A (.385 T)ˆ (.5 m )ˆ a (.385 T)ˆ.5 m.8ˆ ( +.6ˆ ).46 Wb d.) No flux pae through urface abe and dcf o the net flux : φ net φ abcd +φ befc +φ aefd +φ abe +φ dcf φ net.46 Wb + +.46 Wb + + Th agree wth Gau Law for Magnetm whch tate that: da

HO 4 Soluton 6.) q 4.8 x -9 C trael n crcular orbt R.468 m due to force from.65 T perpendcular to t orbt F q ma m R a ˆ nce and are perpendcular q m R and qr m p p qr ( 4.8 x -9 C) (.65 T) (.468 m) 3.7 x -9 g m chec unt: p qr [ ] ( C) ( T) ( m) [ ] ( C) N m A m [ ] ( C) g m C [ ] g m b.) L r p o L R p.468 m 3.7 x -9 g m.73 x -9 g m 7.) o _ A. cm o.94 x 6 m ˆ and R.5 m for an electron q -.6 x -9 C and m e 9. x -3 g F q ma m R a ˆ and q m R The magntude of : m qr ( 9. x -3 g).94 x 6 m 3.35 x -4 T.6 x -9 C.5 m The drecton of determned ung Rght-Hand-Rule. At pont A the force to the rght and the elocty upward. So the magnetc feld mut pont outward for pote charge and nward for negate charge. Therefore: ( 3.35 x -4 T)ˆ 8.) o _ A. cm o.94 x 6 m ˆ and R.5 m for a proton q.6 x -9 C and m p.67 x -7 g F q ma m R a ˆ and q m R The magntude of : m qr (.67 x -7 g).94 x 6 m.64 T.6 x -9 C.5 m The drecton of determned ung Rght-Hand-Rule. At pont A the force to the rght and the elocty upward. So the magnetc feld mut pont outward for pote charge and nward for negate charge. Therefore: (.64 T)ˆ

HO 4 Soluton 9.) m.6 x -6 g, q.6 x -9 C, ΔV 45 V,.73 T (perpendcular to ) Ue energy coneraton to get the peed of the partcle when t enter the magnetc feld. ΔK ΔU qδv o m qδv and qδv m 45 V.6 x -9 C.6 x -6 g. x 5 m F q ma m R a ˆ o q m R and R m q R m q (.6 x -6 g). x 5 m. m.6 x -9 C.73 T chec unt: R m q ( g) m [ ] ( C) ( T) [ ] ( g ) m N C A m [ ] ( g ) m C C m g m [ ] m.) m 9. x -3 g, q -.6 x -9 C, ΔV, V Ue energy coneraton to get the peed of the electron when t enter the magnetc feld. ΔK ΔU qδv o m qδv and qδv m, V.6 x -9 C 9. x -3 g 8.38 x 7 m Electron enter magnetc feld n a crcular arc R.3 m. F q ma m R a ˆ o q m R and m qr m qr ( 9. x -3 g) 8.38 x 7 m 3.67 x -3 T.6 x -9 C.3 m

HO 4 Soluton.) m 9. x -3 g, q -.6 x -9 C, 4 m ˆ + 35 m ˆ, F ( 4. fn)ˆ + ( 4.8 fn)ˆ F q q ˆ ˆ ˆ x y z o F ( 4. fn)ˆ + ( 4.8 fn)ˆ.6 x -9 C ˆ ˆ ˆ 4 m 35 m Expandng determnant: F ( 4. fn)ˆ + ( 4.8 fn)ˆ.6 x -9 C ˆ 35 m ˆ 4 m + ˆ 4 m 35 m ˆ ( 4. fn)ˆ.6 x -9 C 35 m.6 x -9 C 35 m ˆ ( 4. x -5 N) (.6 x -9 C) 35 x 3 m.75 T ˆ ( 4.8 fn)ˆ.6 x -9 C 35 m.6 x -9 C 35 m ˆ ( 4.8 x -5 N).6 x -9 C 4 x 3 m.75 T (.6 x -9 C ) ˆ 4 m 35 m.6 x -9 C 4 m o Therefore: (.75 T)ˆ

HO 4 Soluton.) l. m,.87 T, F. N F l l o F l.) 7. A, l (. m)ˆ b.) c.) d.) (.65 T)ˆ F l 7 A (.56 T)ˆ F l 7 A (.3 T)ˆ F l 7 A. m. N. m (.87 T) 3 A (ˆ (.65 T )ˆ ).455 N. m ˆ (ˆ (.56 T )ˆ ).39 N. m (.74 T)ˆ (.36 T)ˆ F l 7 A ˆ (ˆ (.3 T )ˆ ).7 N. m ˆ ( ˆ ) (.455 N)ˆ ( ˆ ) (.39 N)ˆ ( ˆ ) (ˆ ((.74 T)ˆ (.36 T )ˆ )).58 N F (.58 N)ˆ + (.5 N)ˆ (.5 N)ˆ + (.58 N)ˆ ˆ ( ˆ ).5 N ˆ ( ˆ ) 3.) W N l (. m)ˆ E 8. A (out of the page) 6.7 T, eat F l 8 A ( 6.7 T)ˆ (ˆ ( 6.7 T )ˆ ). m b.) S 6.7 T, outh ( 6.7 T)ˆ F.538 N ˆ ( ˆ ) (.538 N)ˆ (north) F l 8 A (ˆ ( 6.7 T )ˆ ).538 N. m ˆ ( ˆ ) (.538 N)ˆ (eat) c.) 6.7 T, 3 outh of wet d.) 6.7 T, 6 north of eat N N 8. A (out of the page) F W E W E 8. A (out of the page) F S S F.538 N (6 outh of eat) F.538 N (6 wet of north)

HO 4 Soluton 4.) D 6.5 cm, N,.7 A,.56 T Maxmum torque occur when magnetc feld perpendcular to the ax of the col. τ NAnφ (.7 A) (.56 T) π 3.5 x - m n 9.6 N m b.) Occur when nφ.5 or when φ 3 5.) 5 cm x cm rectangular col, N 6,.63 A,.67 T n 9 τ NAnφ 6(.63 A) (.67 T) (.5 m) (. m).589 N m 6.) q 4.97 nc, when 3.57 x 4 m 45 force F n the ˆ drecton when.6 x 4 m ˆ force F 4. x -5 N along the x-ax 3.57 x 4 m 45 3.57 x m 4 co( 45 )ˆ + 3.57 x 4 m n( 45 )ˆ.5 x 4 m ˆ +.5 x 4 m ˆ F q q ˆ ˆ ˆ x y z o F F ˆ z 4.97 x -9 C ˆ.5 x 4 m ˆ.5 x 4 m ˆ.5 x m 4 F z ˆ 4.97 x -9 C ˆ.5 x m 4 ˆ.5 x 4 m.5 x 4 m + ˆ F ha no x or y-component whch mean frt two term are zero and.5 x m 4 F z 4.97 x -9 C.5 x m 4 F z 4.97 x -9 C.5 x 4 m 4.97 x -9 C for th component to be negate ( ) < F ±F xˆ 4.97 x -9 C.5 x 4 m.5 x 4 m.5 x -4 C m z ˆ ˆ ˆ.6 x 4 m.5 x m y 4 x ± ( 4. x -5 N)ˆ ( 4.97 x -9.6 x C) 4 m ˆ.6 x m 4 ˆ + ˆ z F ha no y-component o mddle term zero and

HO 4 Soluton For the x-component: ± ( 4. x -5 N) ( 4.97 x -9 C).6 x 4 m and ( 4. x -5 N) ± ±.498 T ( 4.97 x -9 C).6 x 4 m nce ( ) < and t follow that.498 T Therefore: (.498 N)ˆ 7.) q 35 nc, 5.89 x 5 m ˆ n a unform magnetc feld wth. T,.5 T, and.3 T F q q ˆ F 35 x -9 C F 35 x -9 C ˆ ˆ ˆ x y z 35 x -9 C ˆ 5.89 x 5 m ˆ ˆ. T -.5 T.3 T ˆ 5.89 x m 5 ˆ 5.89 x 5 m + ˆ. T.3 T. T.3 T. T.5 T 5.89 x 5 m.3 T ˆ + 5.89 x 5 m.5 T F (.644 N)ˆ + (.8 N)ˆ and F x, F y.664 N, and F z.8 N ˆ 8.) l. m, 8. A n the +y-drecton n a unform magnetc feld wth.7 T,.3 T, and.538 T F l ˆ ˆ ˆ l x l y l z 8 A ˆ ˆ ˆ. m.7 T.3 T.538 T F 8 A F 8 A. m ˆ.3 T.538 T.7 T.538 T (ˆ ˆ + (. m(.7 T) )ˆ ). m(.538 T) ˆ. m +.7 T.3 T F (.6456 N)ˆ (.84 N)ˆ and F x.6456 N, F y, and F z -.84 N ˆ b.) F F x + F z (.6456 N) + (.84 N).658 N θ tan - F z F x tan -.84 N.6456 N.5

HO 4 Soluton 9.) q -.6 x -9 C,, V 35 V, mt Coneraton of Energy K +U K +U o K ΔU qδv or m qδv Therefore: qδv m -35 V -.6 x -9 C 9. x -3 g. x 7 m b.) F q ma m R o R m q ( 9. x -3 g). x 7 m 3.6 x -4 m.6 x -9 C ( x -3 T).) l.8 m, 3. A, θ 35,.5 T F l o F lnθ ( 3 A) (.8 m) (.5 T)n( 35 ). N

HO 4 Soluton y.) q +.3 m.4 m _ q x q 5. µc q 3. µc r.3 m r.4 m r ˆ -ˆ r ˆ -ˆ 6. x 5 m ˆ 8. x 5 m ˆ µ oq ˆ r -7 N 5 x -6 C 4πr C.3 m 6 x 5 m µ oq ˆ r -7 N -3 x -6 C 4πr C.4 m ˆ -ˆ ˆ 3.33 x -6 T 8 x 5 m ˆ -ˆ ˆ.5 x -6 T + ( 4.83 x -6 T)ˆ.) q + d d + q q 4. µc q 6. µc r d.5 m r d.5 m r ˆ -ˆ ˆ r ˆ 7.5 x 5 m ˆ.5 x 5 m ˆ µ oq ˆ r -7 N 4 x -6 C 4πr C.5 m 7.5 x 5 m µ oq ˆ r -7 N 6 x -6 C 4πr C.5 m ˆ -ˆ ˆ.33 x -5 T.5 x 5 m (-ˆ ) ( ˆ ) ˆ 6.66 x -6 T + (. x -5 T)ˆ 3.) long wre along x-ax wth current 8. A n the x-drecton For mall egment of wre the equaton for an nfntemal current element can be ued wth d l (. mm)ˆ. The magnetc feld of a current element : d µ o 4π d l ˆ r r ˆ r ˆ x 3. m, y, z y d l r ( 3 m)ˆ ˆ r ˆ x d µ o d l ˆ r -7 N ( 8 A) ( x -3 m)ˆ ˆ 4π r C 3 m

3.) (cont d) HO 4 Soluton b.) x, y 3., z y r ( 3 m) ) ) r ˆ d l x d µ o d 4π x -7 N l ˆ r C ( 8 A) ( x -3 m)ˆ ˆ 4π r 4π 3 m ˆ.78 x - T c.) x 3. m, y 3., z y d l x r ( 3 m)ˆ + ( 3 m)ˆ r ( 3 m) + 3 m r ˆ r r ( 3 m )ˆ + ( 3 m)ˆ 8 m 8 m (.77)ˆ + (.77)ˆ d µ o d l ˆ r 4π r 4π x -7 N C 4π ˆ (.77)ˆ + (.77 )ˆ ( 8 A) x -3 m 6.9 x ( 8 m) - T ˆ 4.) 7.5 x -4 T, r.5 m for a long wre: µ o r o r µ o 7.5 x -4 T.5 m 4π x -7 N C 88 A b.) r. m, 88 A µ 4π x -7 N o r C 88 A. m 3.76 x -4 T 5.) long wre 9 A from eat to wet r 5 m aboe the ground drectly under the wre r 5 m µ 4π x -7 N o r C 9 A 5 m Ung Rght-hand Rule the drecton outh. 3.6 x -5 T 5.) (cont d)

b.) walng away from the wre 5 m r HO 4 Soluton 5 m r ( 5 m) + ( 5 m) 5.5 m µ o r 4π x -7 N C ( 9 A) 5.5 m 3.58 x -6 T 6.) 5. A.4 m. A The magnetc feld on wre by wre : µ o 4π x -7 N r C ( 5 A).4 m.5 x -6 T Ung Rght-hand Rule the drecton nto the page or ˆ below the wre. The magnetc force on wre : F ( A) (. m) ˆ F l and the force on a. m length : (.5 x -6 T) ( ˆ ). x -6 N ˆ The magnetc feld on wre by wre : µ o r 4π x -7 N C ( A).4 m. x -6 T Ung Rght-hand Rule the drecton nto the page or ˆ aboe the wre. 6.) (cont d) The magnetc force on wre : F ( 5 A) (. m) ˆ F l and the force on a. m length : (. x -6 T) ( ˆ ). x -6 N So the wre are repelled by a force of F. x -6 N ˆ

HO 4 Soluton b.) when 5 A and 6 A the force tll repule and on wre : µ 4π x -7 N o r C ( 5 A).4 m F l ( 6 A) (. m) ˆ 7.5 x -6 T ( 7.5 x -6 T) ( ˆ ) 9. x -6 N ˆ on wre : µ o r 4π x -7 N C F l ( 5 A) (. m) ˆ ( 6 A).4 m 3. x -6 T ( 3. x -6 T) ( ˆ ) 9. x -6 N ˆ So the wre are repelled by a force of F 9. x -6 N 7.) a a y θ x r r θ θ x 9. A, a.3 m, x.4 m at pont µ o r 4π x -7 N C ( 9 A).5 m 3.6 x -6 T y-component cancel and +.6 x x x ( -6 T) 4.3 x -6 T and.3 m x x coθ 3.6 x -6 T ( 4.3 x -6 T)ˆ (.5 m).6 x -6 T 9. A nto the page or ˆ F l and F ˆ l ˆ 9 A 4.3 x -6 T ˆ 3.89 x -5 N ˆ m b.) 9. A out of the page or ˆ F l and F ˆ l ( 9 A)ˆ ( 4.3 x -6 T)ˆ 3.89 x -5 N ˆ m

HO 43 Soluton.) q -.6 x -9 C.5 A r.8 m 4. x 4 m The magnetc feld from the current n the wre µ 4π x -7 N o r C (.5 A).8 m 3.75 x -6 T The magnetc feld nto the page or n the ˆ drecton. The force on the electron F q (.6 x -9 C) 4 x 4 m ˆ ( 3.75 x -6 T) ( ˆ ) (.4 x - N)ˆ Note that th force away from the wre and would be drected n the upward ˆ drecton f the electron were traelng aboe the wre..) 6. A. m Q.5 m.6 m S.8 m.5 m At pont the magnetc feld due to wre r.5 m µ o r 4π x -7 N C Rght-hand Rule: Thumb pont nto the page and fnger wrap around clocwe. ( 6 A).5 m 8. x -7 T For the no net feld at pont the current n wre mut be out of the page to create a magnetc feld to the rght and equal to. r.5 m µ o o r r µ o.5 m 8. x -7 T 4π x -7 N C A out of the page Rght-hand Rule: Thumb pont out of the page and fnger wrap around counterclocwe. b.) Q r.5 m At pont Q the magnetc feld due to wre µ 4π x -7 N o C ( 6 A) r.5 m.4 x -6 T Rght-hand Rule: Thumb pont nto the page and fnger wrap around clocwe. Q r.5 m At pont Q the magnetc feld due to wre µ 4π x -7 N o C ( A) r.5 m.67 x -7 T Rght-hand Rule: Thumb pont out of the page and fnger wrap around counterclocwe. The total magnetc feld at pont Q Q + (.4 x -6 T)ˆ (.67 x -7 T)ˆ (.3 x -6 T)ˆ

.) (cont d) c.) 6. A. m.6 m S S.8 m. A HO 43 Soluton µ o r µ o r 4π x -7 N C 4π x -7 N C ( 6 A).6 m. x -6 T ( A).8 m 5. x -7 T θ y. m θ.6 m.8 m coθ a h.8 m. m.8 and nθ o h (.6 m) (. m).6 x x nθ (. x -6 T) (.6). x -6 T and y coθ (. x -6 T) (.8).6 x -6 T.6 m y θ x. m θ.8 m coθ a h.8 m. m.8 and nθ o h (.6 m) (. m).6 x coθ ( 5. x -7 T) (.8) 4. x -7 T and y nθ ( 5. x -7 T) (.6) 3. x -7 T Sx x + x. x -6 T Sy y + y.6 x -6 T + ( 4. x -7 T).6 x -6 T + ( 3. x -7 T).3 x -6 T S Sx + Sy (.6 x -6 T) + (.3 x -6 T).6 x -6 T θ tan Sy Sx tan (.3 x -6 T) 39. +8 9..6 x -6 T S.6 x -6 T 9. 3.) R d µ o 4π d l ˆ r r For the traght ecton of wre d l ˆ r and do not contrbute to feld at. d l dθ r Z π µ o 4π d l r Rdθ R For crcular ecton of the wre d l and r are alway perpendcular and by the Rght-hand Rule d l ˆ r pont nto the plane of the page o d l ˆ r Rdθ ˆ µ o 4πR θ π µ o 4πR ( π ) µ o 4R. o µ o ˆ 4R

4.). cm A. cm 5. A.6 cm 4. A HO 43 Soluton For left de of the loop the current gong up ˆ and the magnetc feld pont nto the plane of the page ˆ o the force to the left. The drecton of the force determned by drecton of l ˆ ˆ ˆ For rght de of the loop the current gong down ˆ and the magnetc feld pont nto the plane of the page ˆ o the force to the rght. The drecton of the force determned by drecton of l ˆ. ( ˆ ) ˆ. The force on the top of the loop F l loop l µ o wre r Thee force cancel each other out nce they are the ame dtance from the wre. ˆ ( 5 A) (. m)ˆ The force on the bottom of the loop F l loop l µ o wre r The total force on the loop ˆ 5 A. m ˆ 4π x -7 N C 4π x -7 N C ( 4 A). m ˆ ( 4 A).6 m.8 x -5 N ˆ ˆ.8 x -4 N ˆ F top + F bottom (.8 x -5 N)ˆ (.8 x -4 N)ˆ ( 8. x -5 N)ˆ 5.) Solenod N 5, L. cm, R 3. cm, and 6. A Near the center of a olenod nµ o where n number of turn length N L Therefore 5 turn 4π x -7 N 6. m C A.89 T turn The formula for the magnetc feld near the center of long olenod can be found ung Ampere Law. a l b d l µ o encloed d l + d l + ab bc d l + cd da d l µ o encloed l + + + µ o ln µ o n d l dl l becaue and dl are parallel ab d c bc cd d l and da d l becaue and dl are perpendcular d l becaue ery far from the loop

HO 43 Soluton 6.) a b c - For nner conductor the current denty J nner A πa Ung Ampere Law and a crcular path of radu r < a d l µ o encloed r µ o J nner A µ o πa πr µ o r (r < a) a b.) For a < r < b the encloed current. Ung Ampere Law d l µ o encloed r µ o µ o r (a < r < b) c.) For the outer conductor the current denty J A ( πc πb ) For b < r < c the encloed current nclude that on the nner conductor and a porton of the current on the outer conductor. Ung Ampere Law d l µ o encloed µ o + r µ o + J outer A µ o r r b c b µ o r c r (b < r < c) c b ( ( πc πb ) πr πb ) µ r b o c b d.) When r > c the encloed current encloed and ung Ampere Law d l µ o encloed o (c < r)

HO 43 Soluton 7.) Long wre radu R and current wth J αr where α a contant. R R JdA αrrdr α r r 3 dr dr α r 3 R αr 3 3 da rdr Therefore α 3 R 3 b.) r.) for r R encloed J da r r αrrdr α r dr α r 3 3 r α 3 r 3 ung the reult from ( encloed R 3 r 3 Ung Ampere Law d l µ o encloed r µ o µ o r R 3 r 3 R 3 r 3 µ o R r (r R) 3.) for r > R encloed d l µ o encloed r µ o µ o r (r > R) 8.) y.4 m y r xˆ + yˆ xd l dx 3 A ˆ x x.3 m ˆ r xˆ + yˆ x + y d µ o d l ˆ r µ o ( dx)ˆ 4π r 4π ( x + y ) xˆ + yˆ x + y d µ o 4π µ o 4π d l ˆ r r ydx µ o 4π ( x + y ) 3 ˆ ydx ( x + y ) 3 ˆ from ntegral table dx ( x + y ) 3 x + C o µ o y x + y 4π yxdx y x + y ˆ + C µ o 4π x y x + y x.3 m x ˆ -7 T m A.4 m ( 3 A) (.3 m) ˆ + (.4 m).3 m ( 4.5 x -5 T)ˆ